

SANDVIK 254 SMO (ESR) BILLETS

DATASHEET

Sandvik 254 SMO* (ESR) is a high-alloy austenitic stainless steel developed for use in seawater and other aggressive chloride-bearing media. The steel is electroslag remelted which gives a cleaner material free from segregations. The grade is characterized by:

- Excellent resistance to pitting and crevice corrosion
- High resistance to general corrosion
- High resistance to stress corrosion cracking
- Higher strength than conventional austenitic stainless steels
- Good weldability

STANDARDS

- UNS: S31254
- EN Number: 1.4547
- SS: 2378

Product standards EN 10088-3

Suitable for production of flanges etc. according to ASTM A182 Grade F44.

Certificates

Status according to EN 10 204 3.1

CHEM	IICAL COM	POSITION	and the second second	inder and when a drawn and when	authorna authorna aut	and antipation with	and and the second statement	and trained and trained	and the second section of the second
C	Si	Mn	Р	S	Cr	Ni	Мо	N	Cu
≤0.020	≤0.80	≤1.00	≤0.030	≤0.010	20	18	6.1	0.20	0.7

FORMS OF SUPPLY

Sizes and tolerances

Round-cornered square, as well as round billets, are produced in a wide range of sizes according to the following tables. Larger sizes offered on request.

Surface conditions Square billets Unground, spot ground or fully ground condition.

Round billets

Peel turned orblack condition.

Square billets

Size	Tolerance	Length
mm	mm	m ^s s ^s
80	+/-2	4 - 6.3
100, 114, 126, 140, 150	+/-3	4 - 6.3
160, 180, 195,200	+/-4	4 - 6.3
>200 - 350	+/-5	3 - 5.3

Sizes and tolerances apply to the rolled/forged condition.

Peel turned round billets

Size	Tolerance	Length
/mm / / / / / / / / / / / / / /	mm	m / / / / /
75 - 200 (5 mm interval)	+/-1	max 10
>200 - 450	+/-3	3 - 8

Unground round billets

Size	Tolerance	Length
/mm / / / / / / / / / / / / / /	mm	m
77 - 112 (5 mm interval)	+/-2	max 10
124, 134	+/-2	max 10
127, 147, 157	+/-2	max 10
142, 152, 163	+/-2	max 10
168, 178, 188	+/-2	max 10
183, 193	+/-2	max 10

Other products

Mostly supplied in non-ESR condition

Welded tube and pipe

- Seamless tube and pipe
- Fittings and flanges

MECHANICAL PROPERTIES

For billets testing is performed on separately solution annealed and quenched test pieces.

The following figures apply to material in the solution annealed condition.

At 20°C (68°F)

Metric units

Proof strength	a starter at a starter at a starter	Tensile strength	Elong Hardness
Rp0.2ª	Rp1.0ª	Ŕm	Ab Brinell
MPa	MPa	MPa	% / / /

Metric units

Proofstre	ength	Tensile strength	Elong	Hardness
Rp0.2 ^a	Rp1.0ª	Rm	Ab	Brinell
MPa	MPa	MPa	%	The set of set of set of the set
≥310	≥340	675-850	≥35	≤260

Imperial units

Proofstrength	Start Start Start Start	Tensile strength	Elong.	Hardness		
Rp0.2 ^a	Rp1.0ª	Rm	Аь	Brinell		
ksi	ksi	ksi	%			
≥45	≥49	98-123	≥35	≤260		

1 MPa = 1 N/mm²

a) $R_{p0.2}$ and $R_{p1.0}$ correspond to 0.2% offset and 1.0% offset yield strength, respectively. b) Based on L0 = 5.65 $\sqrt{S0}$ where L0 is the original gauge length and S0 the original cross-section area.

Impact strength

Due to its austenitic microstructure, Sandvik 254 SMO/ESR has very good impact strength both at room temperature and at cryogenictemperatures.

Tests have demonstrated that the steel fulfils the requirements (60 J (44 ft-lb) at -196 oC (-320 oF)) according to the European standards EN 13445-2 (UFPV-2) and EN 10216-5.

At high temperatures

Intermetallic phases are precipitated within the temperature range of 600-1000°C (1110-1830°F). The steel should therefore not be exposed to these temperatures for prolonged periods. Minimum proof strenght properties at high temperatures are based on datasheets seamless tubes and pipe. Since the tubes have thin walls the values should only be used as indicative values for billets.

Metric units

Temperature	Proof strength	
°C S S S S S S	Rp0.2	Rp1.0
	MPa	MPa
	min.	min.
100	230	270
200	190	225
300	170	200
400	160 / / /	190

Imperial units

stratra	Tem	nper	atu	re	oter		3.5	of all	Stell	Steel Steel	area Star	area Stee	[reserved	Strategies C	Proof strength					en e								
Steeling	°Ę	Stefas	States	Stefre	Oter	C. Marine	State	Staff	Staff Staff	Stell	Stell	Street Street	Indone	Sterness	Rp0.2	States	Steiner	Steiner	Steller	Stefer	Staff	Rp1.0	States	Stefes	Stelles	Steiner	Steine	<i>.</i>
Steeling	Staling	Stelles.	States	Steller	Stafe	States	Staff"	Stell	Shell	States	Stal	Gree Gree	Instein i	Sternster	ksi	3 terro	Steins	States	States	Stefe	Ster	ksi 🧹	States	Sterios	Steffe	Steine	Steins	
Steatin	Steller	Stefe	State	State	Stafe	States	Stell	Sher	Shell	Stat	Ster	Ster	(m ²	Steres o	min.	Steffer	Sterr	Sterr	State	Stere	Ster	min.	Sterr	Stele	State	Sterr	Steff	,
Steat	200	Stell	State	Stell	Stel	Stell.	Stat	Stell	Shell	Ster.	Ster.	Ster		Strating of	34	Stell	Sterr	Stern	State	State	Ster	40	Sterr	Stel	State	Sterr	Stell	, - , -
steit ^{er}	400	. Sterring	Start Start	State of	State .	Sterring of	an Stat	Stell	o Ster	e Stat	a Sector	a Ste		Strature 2	27	Steres	States .	Steller A	o State	an States	State	32	a State	Steller	of States	Steller	Steller March	,
stra il stra	600	Colored Colored	10 CTAR	1	an Staff	State of the state	an Stati	State of	Start Start	State State		or Stat		Gilen C	24	. Stadi	of Station	of States	1. State	of Station	of Grad	29	a State	C. C	of State	of the second	and the second	į.
Ster <u>t</u>	700	" Charl	of Color	of Greek	or Stat	and sold	and and	Start	Star Star	and and	and state	and and		Stranger C	24	. Star	a star	and a start	of and	en Stal	or offer	28	an ann	STAN STAN	of Gran	an cond	of States	<u>_</u>

PHYSICAL PROPERTIES

Density: 8.0 g/cm3, 0.29 lb/in3

Thermal conductivity

Temperature, ₀C	W/m ∘C	Temperature, ₀F	Btu/ft h∘F
20	10	68	6
100	12	200	and 7 and and and and and and
200	3 ^{1/1} 14 ^{1/1} 3 ^{1/1} 3 ^{1/1} 3 ^{1/1} 3	400 / / / / / / /	8
300	s 16 s s s s	600	9.5
400	d 18 d d d d	800 0 0 0 0 0 0	10.5
500	20	1000	11.5
600 3 3 3 3 3 3 3	³ 21 ³ ³ ³	1200	12.5
700	23	1300	13

Specific heat capacity

Temperature, °C	J/kg ℃	Temperature, °F	Btu/ft h °F				
20	485	68	0.12				
100	510	200	0.12				
200	535	400	0.13				
300	565	600	0.14				
400	585	800	0.14				
500 / / / / / /	600	1000	0.14				
600	615	1200	0.15				
700	625	s 1400 s s s s s	0.15				

Thermal expansion 1)

Temperature, °C	Per °C	Temperature, °F	Per °F
30-100	16	86-200	a ^{nt} a ^{nt} a ^g a ^{nt} a ^{nt} a
30-200	16	86-400	8 9 8 8 8 8 8 8 8
30-300	16.5	86-600	9
30-400	16.5	86-800	9.5
30-500	17	86-1000	9.5
30-600		86-1200	9.5
30-700	17.5	86-1300	10

1) mean values in temperature ranges (x106)

Modulus of elasticity 1)

Temperature, °C	MPa	Temperature, ℉	ksi
20	195	68	28.3
100	190	200	27.6
200 / / / / / / / / /	182	400	27.5

Modulus of elasticity 1)

, heat	Temperature, °C	Staff Staff	MPa	Temperature, °F	🧉 ksi 🚽 🚽
ster	300	Stern Ster	174 🗸	600	25.1
strat	400	States State	166	800	23.8
jte?	500	States States	158	1000	22.5

1) (x103)

CORROSION RESISTANCE

Stress corrosion cracking (SCC)

Ordinary austenitic steels of the AISI 304 and 316 types are prone to stress corrosion cracking in chloridecontaining solutions at temperatures exceeding about 60°C (140°F). For austenitic steels, resistance to SCC increases with increasing nickel and molybdenum contents. The tables below give the results of two accelerated tests, showing that Sandvik 254 SMO has very good resistance to SCC.

Stress corrosion cracking tests in boiling 25% NaCL solution, pH=1.5. U-bend specimens.

Steel	Time to failure	Remark
AISI 316	<150 h	Pitting
904L	No failure (1000h)	Crevice corrosion
254 SMO	No failure (1000h)	No attack

Intergranular corrosion

Sandvik 254 SMO/ESR has a very low carbon content. This means that there is very little risk of carbide precipitation during heating, for example, when welding. The steel passes the Strauss test (ASTM A262, practice E) even after sensitizing for one hour at 600-1000°C (1110-1830°F).

However, due to the high alloying content of the steel, intermetallic phases can precipitate at the grain boundaries in the temperature range at 600-1000°C (1110-1830°F). These precipitations do not involve any risk of intergranular corrosion in the environments in which the steel is intended to be used. Thus, welding can be carried out without any risk of intergranular corrosion.

Pitting corrosion

The high chromium content and particularly the molybdenum content give Sandvik 254 SMO/ESR excellent resistance to pitting and crevice corrosion.

The high nitrogen content also improves pitting resistance. The results of laboratory determination of the critical pitting temperature (CPT) in 3 % NaCl shows that Sandvik 254 SMO/ESR has a far greater CPT than 904L and it possesses very good resistance in water containing chlorides. Sandvik 254 SMO/ESR is, therefore, a suitable material for use in, for example, seawater.

Crevice corrosion

The weak point of conventional stainless steels is their limited resistance to crevice corrosion. In seawater, for example, there is a considerably greater risk of crevice corrosion under gaskets, deposits or fouling. Tests in natural seawater at 60°C (140°F) have shown that Sandvik 254 SMO/ESR can be exposed for prolonged periods, without suffering crevice corrosion.

For further information regarding corrosion resistance of Sandvik 254 SMO, please see the data sheet Seamless tube and pipe - Sandvik 254 SMO. The data should be considered in the knowledge that it may not be applicable for thick sections, such as forgings.

HOT WORKING

Hot working should be carried out at a material temperature of 950-1200°C (1740-2190°F). Hot working of

Sandvik 254 SMO/ESR should be followed by rapid cooling in air or water. Subsequent heat treatment should be carried out in accordance with the recommendations given for heat treatment.

HEAT TREATMENT

Billets are delivered in the hot worked condition. The following heat treatment is recommended.

Solution annealing

1150-1200°C (2100-2190°F), followed by quenching in water.

WELDING

The weldability of Sandvik 254 SMO/ESR is good. Preheating and post-weld heat treatment are normally not recommended. Suitable methods of fusion welding are manual metal-arc with covered electrodes and gas shielded arc welding, mainly by means of the TIG and MIG/MAG methods.

Since the material is intended for use under severely corrosive conditions, welding must be carried out with care, and followed by thorough cleaning to ensure that the weld metal and the heat affected zone will have as good corrosion properties as possible. Degreasing of the weld area with acetone or alcohol is recommended, in order to avoid porosity and fissuring.

The heat input during welding should not exceed 1.0 kJ/mm, and in multi-pass welding, the interpass temperature should not exceed 100°C (210°F). A stringer bead welding technique should be used.

The welding of fully austenitic steels usually entails a risk of hot cracking in the weld metal, particularly if the weldment is under constraint. However, since Sandvik 254 SMO/ESR has a very high degree of purity, the risk of this type of cracking is greatly reduced. Backing bars and similar devices of copper alloys, however, cannot be used, since copper penetration into the grain boundaries in stainless steel can lead to cracking.

In common with all austenitic stainless steels, Sandvik 254 SMO/ESR has low thermal conductivity and high thermal expansion. For this reason, welding should be carefully planned in advance so that distortion of the welded joint can be minimised. If, despite these precautions, it is believed that residual stresses may impair the function of the weldment, it is recommended that the entire structure is solution annealed. See under Heat treatment.

Sanicro 60 wire and electrodes are recommended as filler metal. This filler metal is overalloyed and produces a weld that has better corrosion properties than the parent metal. Sanicro 60 is also suitable for welding joints between Sandvik 254 SMO/ESR and nickel alloys, other stainless steels or carbon steels.

MACHINING

Machining Sandvik 254 SMO/ESR, as with other stainless steels, requires an adjustment to tooling data and machining method, in order to achieve satisfactory results. Compared to Sanmac 316/316L, the cutting speed must be reduced by approximately 55-60% when turning Sandvik 254 SMO/ESR with coated, cemented carbide tools. Much the same applies to other operations. Feeds should only be reduced slightly and with care.

Detailed recommendations for the choice of tools and cutting data are provided in the data sheet for Sanmac 316/316L.

APPLICATIONS

Sandvik 254 SMO is used in the following applications:

- Equipment for handling seawater for example, heat exchangers, cooling water systems, ballast water systems, firefighting systems etc.
- Equipment in pulp bleaching plants.
- Components in gas cleaningsystems.

Industrial categories

Typical applications

Chemical industry	Flanges
Petrochemical industry	Valves
Pulp and paperindustry	Fittings
Oil and gasindustry	Couplings
	Rings
هي التي التي التي التي التي التي التي الت	Seals / / / / / / / / /
لكى ^{الم} لكى ^{المم} لكى ^{الم} لكى ^{الم} لكى ^{الم} لكى ^{الم} لكى ^{الم} لكى ^{الم} لكى ^{المم} لكى ^{المم} لكى ^{المم} لكى ^{المم} لكى	Bolts and nuts
d d d d d d d d d d d d d d d	Shafts
and an an an an an an an an	Forgings
at a	Discs

* 254 SMO is a trademark owned by Outokumpu OY.

Disclaimer: Recommendations are for guidance only, and the suitability of a material for a specific application can be confirmed only when we know the actual service conditions. Continuous development may necessitate changes in technical data without notice. This datasheet is only valid for Sandvik materials.

